Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Ann Hematol ; 102(4): 715-727, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2277091

ABSTRACT

There are currently three thrombopoietin receptor agonists (TPO-RAs) approved in Europe for treating patients with immune thrombocytopenia (ITP): romiplostim (Nplate®), eltrombopag (Revolade®), and avatrombopag (Doptelet®). However, comparative clinical data between these TPO-RAs are limited. Therefore, the purpose of this study was to perform a literature review and seek expert opinion on the relevance and strength of the evidence concerning the use of TPO-RAs in adults with ITP. A systematic search was conducted in PubMed and Embase within the last 10 years and until June 20, 2022. A total of 478 unique articles were retrieved and reviewed for relevance. The expert consensus panel comprised ITP senior hematologists from eight countries across Central Europe. The modified Delphi method, consisting of two survey rounds, a teleconference and email correspondence, was used to reach consensus. Forty articles met the relevancy criteria and are included as supporting evidence, including five meta-analyses analyzing all three European-licensed TPO-RAs and comprising a total of 31 unique randomized controlled trials (RCTs). Consensus was reached on seven statements for the second-line use of TPO-RAs in the management of adult ITP patients. In addition, the expert panel discussed TPO-RA treatment in chronic ITP patients with mild/moderate COVID-19 and ITP patients in the first-line setting but failed to reach consensus. This work will facilitate informed decision-making for healthcare providers treating adult ITP patients with TPO-RAs. However, further studies are needed on the use of TPO-RAs in the first-line setting and specific patient populations.


Subject(s)
COVID-19 , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Adult , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Receptors, Thrombopoietin/agonists , Consensus , Thrombocytopenia/chemically induced , Thrombopoietin/therapeutic use , Receptors, Fc/therapeutic use , Benzoates/therapeutic use , Hydrazines/therapeutic use , Recombinant Fusion Proteins/therapeutic use
2.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article in English | MEDLINE | ID: covidwho-1964013

ABSTRACT

Iron is a crucial element for mammalian cells, considering its intervention in several physiologic processes. Its homeostasis is finely regulated, and its alteration could be responsible for the onset of several disorders. Iron is closely related to inflammation; indeed, during inflammation high levels of interleukin-6 cause an increased production of hepcidin which induces a degradation of ferroportin. Ferroportin degradation leads to decreased iron efflux that culminates in elevated intracellular iron concentration and consequently iron toxicity in cells and tissues. Therefore, iron chelation could be considered a novel and useful therapeutic strategy in order to counteract the inflammation in several autoimmune and inflammatory diseases. Several iron chelators are already known to have anti-inflammatory effects, among them deferiprone, deferoxamine, deferasirox, and Dp44mT are noteworthy. Recently, eltrombopag has been reported to have an important role in reducing inflammation, acting both directly by chelating iron, and indirectly by modulating iron efflux. This review offers an overview of the possible novel biological effects of the iron chelators in inflammation, suggesting them as novel anti-inflammatory molecules.


Subject(s)
Iron Overload , Animals , Benzoates/therapeutic use , Deferasirox/therapeutic use , Deferiprone , Deferoxamine/therapeutic use , Inflammation/complications , Inflammation/drug therapy , Iron/therapeutic use , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Iron Overload/drug therapy , Iron Overload/etiology , Mammals , Pyridones/therapeutic use
3.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1346501

ABSTRACT

17,18-Epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) are bioactive epoxides produced from n-3 polyunsaturated fatty acid eicosapentaenoic acid and docosahexaenoic acid, respectively. However, these epoxides are quickly metabolized into less active diols by soluble epoxide hydrolase (sEH). We have previously demonstrated that an sEH inhibitor, t-TUCB, decreased serum triglycerides (TG) and increased lipid metabolic protein expression in the brown adipose tissue (BAT) of diet-induced obese mice. This study investigates the preventive effects of t-TUCB (T) alone or combined with 19,20-EDP (T + EDP) or 17,18-EEQ (T + EEQ) on BAT activation in the development of diet-induced obesity and metabolic disorders via osmotic minipump delivery in mice. Both T + EDP and T + EEQ groups showed significant improvement in fasting glucose, serum triglycerides, and higher core body temperature, whereas heat production was only significantly increased in the T + EEQ group. Moreover, both the T + EDP and T + EEQ groups showed less lipid accumulation in the BAT. Although UCP1 expression was not changed, PGC1α expression was increased in all three treated groups. In contrast, the expression of CPT1A and CPT1B, which are responsible for the rate-limiting step for fatty acid oxidation, was only increased in the T + EDP and T + EEQ groups. Interestingly, as a fatty acid transporter, CD36 expression was only increased in the T + EEQ group. Furthermore, both the T + EDP and T + EEQ groups showed decreased inflammatory NFκB signaling in the BAT. Our results suggest that 17,18-EEQ or 19,20-EDP combined with t-TUCB may prevent high-fat diet-induced metabolic disorders, in part through increased thermogenesis, upregulating lipid metabolic protein expression, and decreasing inflammation in the BAT.


Subject(s)
Anti-Obesity Agents/therapeutic use , Arachidonic Acids/therapeutic use , Benzoates/therapeutic use , Obesity/drug therapy , Phenylurea Compounds/therapeutic use , Adipogenesis , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Animals , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/pharmacology , Arachidonic Acids/administration & dosage , Arachidonic Acids/pharmacology , Benzoates/administration & dosage , Benzoates/pharmacology , Blood Glucose/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Diet, High-Fat , Epoxide Hydrolases/antagonists & inhibitors , Fatty Acids/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Obesity/etiology , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL